isolated$41062$ - перевод на испанский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

isolated$41062$ - перевод на испанский

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated      
adj. aislado, apartado, cerrado en sí mismo, distanciado, incomunicado, solo; esporádico, fuera del camino
isolation         
WIKIMEDIA DISAMBIGUATION PAGE
Isolated; Isolation (song); Isolating; Isolations; Isolatedness; Isolation (disambiguation); Human isolation; Human isolation (disambiguation); Isolation (album); Isolation (film); User talk:Peytonic1/sandbox
aislamiento
Isolation         
WIKIMEDIA DISAMBIGUATION PAGE
Isolated; Isolation (song); Isolating; Isolations; Isolatedness; Isolation (disambiguation); Human isolation; Human isolation (disambiguation); Isolation (album); Isolation (film); User talk:Peytonic1/sandbox
Aislamiento

Определение

Anencephalous
·adj Without a brain; brainless.

Википедия

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.